2002 - Linear Motion Question

1. (a) A stone is thrown vertically upwards under gravity with a speed of $u \mathrm{~m} / \mathrm{s}$ from a point 30 metres above the horizontal ground. The stone hits the ground 5 seconds later.
(i) Find the value of u.
(ii) Find the speed with which the stone hits the ground.
(b) A particle, with initial speed u, moves in a straight line with constant acceleration.
During the time interval from 0 to t, the particle travels a distance p.
During the time interval from t to $2 t$, the particle travels a distance q. During the time interval from $2 t$ to $3 t$, the particle travels a distance r.
(i) Show that $2 q=p+r$.
(ii) Show that the particle travels a further distance $2 r-q$ in the time interval from $3 t$ to $4 t$.

Question I
2002
QI/
(a)

- Find the time to the top:

$$
\begin{array}{lc}
U=U & U=u+a r \\
V=0 & 0=u-9 \cdot 8 r \\
a=-9 \cdot 8 & \frac{U}{9 \cdot 8}=r \\
S=- & =\text { Time FROM LEDGE To the top } \\
r=? &
\end{array}
$$

- Tint from croce to the Ground on the wat down:

$$
\begin{aligned}
& u=u \\
& v=v \\
& a=9.8 \\
& s=30 n
\end{aligned}
$$

$$
r=? \longleftarrow \quad r=5-\frac{2 u}{9}
$$

$$
S=u t+\frac{1}{2} a \neq 2
$$

$$
30=u\left(5-\frac{2 u}{9}\right)+\frac{1}{2}\left(9 \cdot\left(5-\frac{2 u}{9}\right)^{2}\right.
$$

$$
\begin{aligned}
& 30=5 u-\frac{2 u^{2}}{9}+\frac{g}{2}\left[25-\frac{10 u}{9}-\frac{10 u}{9}+\frac{4 u^{2}}{g^{2}}\right] \\
& 30=5 u-\frac{2 u^{2}}{9}+\frac{25 g}{2}-5 u-5 u+\frac{2 u^{2}}{9} \\
& 30=\frac{25 g}{2}-5 u \\
& 5 u=\frac{25 g}{2}-30 \\
& 5 u=\frac{25(9.8)}{2}-30 \\
& 5 u=92.5 \Rightarrow u=18.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(ii) Find speed on hitting ground:

- Travelling at speed U cohen 17 parsis tret LEDGE ON THE WAT DOWN.

$$
\begin{array}{ll}
u=18.5 & v^{2}=u^{2}+2 a s \\
v=? & v^{2}=(18.5)^{2}+2(9.8)(30) \\
a=9.8 & v^{2}=342.25+588 \\
s=30 \sim & v^{2}=930.25 \\
r=- & v=30.5 \mathrm{~m} / \mathrm{s}
\end{array}
$$

2002
Qy
(b) $(i) \xrightarrow{u}$

$0 \rightarrow \vdash$ sec
$u=u$
$S=u t+\frac{1}{2} a t^{2}$
$v=-$
$a=a$
$\rho=u t+\frac{1}{2} a t^{2}$
$s \in p$

$$
r=j
$$

$2 p=2 u t+a t^{2} I$

$$
0 \rightarrow 2 t \mathrm{sec}
$$

$u=u$

$$
v=-
$$

$$
s=p+q
$$

$$
r=2 t
$$

$$
\begin{gathered}
s=u t+\frac{1}{2} a t^{2} \\
p+q=u(2 t)+\frac{1}{2}(a)(2 t)^{2} \\
p+q=2 u t+2 a t^{2} \text { II }
\end{gathered}
$$

$0 \rightarrow 3+\mathrm{sec}$

$$
\begin{aligned}
& u=u \\
& v=- \\
& a=a \\
& s=p+q+r \\
& t=3 t
\end{aligned}
$$

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& p+q+r=u(3 t)+\frac{1}{2}(a)(3 t)^{2} \\
& p+q+r=3 u t+\frac{9}{2} a t^{2}
\end{aligned}
$$

Q1／b）frome equ I：$\quad a t^{2}=2 p-2 u t$
Sus ハ～ファ 표：

$$
\begin{aligned}
p+q & =2 u t+2 a t^{2} \\
p+q & =2 u t+2(2 p-2 u t) \\
p+q & =2 u t+4 p-4 u t \\
p+q & =4 p-2 u t \\
-3 p+q & =-2 u t \\
\text { so, } & 3 p-q=2 u t
\end{aligned}
$$

Susin10 III：$p+q+r=3 u t+\frac{q}{2} a t^{2}$

$$
\begin{aligned}
\Rightarrow & p+q+r=3 u t+\frac{9}{2}(2 p-2 u t) \\
& p+q+r=3 u t+9 p-9 u t \\
& p+q+r=9 p-6 u t
\end{aligned}
$$

so，

$$
\begin{aligned}
& p+q+r=9 p-3(2 u t) \\
& p+q+r=9 p-3(3 p-q) \\
& p+q+r=9 p-9 p+3 q \\
& p+q+r=3 q
\end{aligned}
$$

so，

$$
p+r=2 q
$$

a)
(b)
(ii) Particles trantls dist. X ouring $3+\rightarrow 4$ t

$$
\begin{array}{lc}
0 \rightarrow 4 t & \\
u=u & s=u t+\frac{1}{2} a t^{2} \\
v=-a & \\
a=a & p+q+r+x=u(4 t)+\frac{1}{2} a(4 t)^{2} \\
r=4+q+r+x & p+q+r+x=4 u t+8 a t^{2}
\end{array}
$$

(sur

$$
\begin{aligned}
& p+q+r+x=4 u t+8(2 p-2 u t) \\
& p+q+r+x=4 u t+16 p-16 u t \\
&-15 p+q+r+x=-12 u t \\
&-15 p+q+r+x=-6(2 u t)
\end{aligned}
$$

(BuT 2ut $=3 p-q$)

$$
\begin{aligned}
& -15 p+q+1+x=-6(3 p-q) \\
& -15 p+q+1+x=-18 p+6 q \\
& 3 p-5 q+1+x=0
\end{aligned}
$$

(su7 $p=2 q-\cdots$)

$$
\begin{gathered}
3(2 q-r)-5 q+r+x=0 \\
6 q-3 r-5 q+r+x=0 \\
q-2 r+x=0
\end{gathered}
$$

so,

$$
x=2 r-q
$$

